本站公告 |加入收藏 | 设为首页 | 会员中心 | 我要投稿 | 雁过留声 | RSS
您当前的位置:首页 > 教与学 > 教学论文

《分解因式》中考热点透视

时间:2014-08-19 00:01:41  来源:  作者:  本文已影响:

《分解因式》中考热点透视

 

 

《分解因式》一章中,我们主要学习了分解因式的概念、会用两种方法分解因式,即提公因式法、平方差公式和完全平方公式(直接用公式不超过两次)进行因式分解(指数是正整数). 具体要求有:

1、经历探索分解因式方法的过程,体会数学知识之间的整体(整式乘法与因式分解)联系.

2、了解因式分解的意义,会用提公因式法、平方差公式和完全平方公式(直接用公式不超过两次)进行因式分解(指数是正整数).

3、通过乘法公式:(a + b)(a - b)=a2 - b2,(a±b)2= a2±2ab + b2的逆向变形,进一步发展观察、归纳、类比、概括等能力,发展有条理思考及语言表达能力.

在中考中,除了考查对一个整式进行分解因式等常规题型外,因式分解作为一种重要的解题方法和工具,经常出现于各种题型中,以下几种就值得引起注意.

 

一、构造求值型

例1(2004山西)已知x+y=1,那么 的值为_______.

分析:通过已知条件,不能分别求出x、y的值,所以要考虑把所求式进行变形,构造出x+y的整体形式. 在此过程中我们要用完全平方公式对因式分解中的.

= (x2+2xy+y2)= (x+y)2 = 12 = 1 = .

在此过程中,我们先提取公因式 ,再用完全平方公式对原式进行因式分解,产生x+y的整体形式,最后将x+y=1代入求出最终结果.

例2(2004广西桂林)计算: ___________.

分析:为了便于观察,我们将原式“倒过来”,即

原式 =

[1] [2] [3] [4] [5] [6] 下一页

上一篇:送 给 高一 新 生 ; 下一篇:关于小学数学教学中合作学习的几点观察与思考
发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表
推荐资讯
百度
相关文章
    无相关信息
谷歌
栏目更新
淘宝
栏目热门